18. 4Sum
Problem description:
Given an array nums of n integers and an integer target, are there elements a, b, c, and d in nums such that a + b + c + d = target
? Find all unique quadruplets in the array which gives the sum of target.
Note:
The solution set must not contain duplicate quadruplets.1
2
3
4
5
6
7
8
9
10Example:
Given array nums = [1, 0, -1, 0, -2, 2], and target = 0.
A solution set is:
[
[-1, 0, 0, 1],
[-2, -1, 1, 2],
[-2, 0, 0, 2]
]
Solution:
This problem is pretty similar to , the key idea is to downgrade it to 2Sum problems. Other conditions is to increase performance.1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39class Solution {
public:
vector<vector<int>> fourSum(vector<int>& nums, int target) {
vector<vector<int>> total;
int n = nums.size();
if(n<4) return total;
sort(nums.begin(),nums.end());
for(int i=0;i<n-3;i++)
{
if(i>0 && nums[i]==nums[i-1]) continue; //skip duplicate element
if(nums[i]+nums[i+1]+nums[i+2]+nums[i+3]>target) break; //because the array is sorted, if 4 elements start from i is greater than target, no need to do the rest
if(nums[i]+nums[n-3]+nums[n-2]+nums[n-1]<target) continue; //because the array is sorted, if 4 elements start from i is smaller than target, we should keep finding upcoming sequence
for(int j=i+1;j<n-2;j++)
{
if(j>i+1&&nums[j]==nums[j-1]) continue;
if(nums[i]+nums[j]+nums[j+1]+nums[j+2]>target) break;
if(nums[i]+nums[j]+nums[n-2]+nums[n-1]<target) continue;
int left=j+1,right=n-1; //two pointer to search toward right and left
while(left<right){
int sum=nums[left]+nums[right]+nums[i]+nums[j];
if(sum<target) left++;
else if(sum>target) right--;
else{
total.push_back(vector<int>{nums[i],nums[j],nums[left],nums[right]});
do{
left++;
}while(nums[left]==nums[left-1]&&left<right); //move left at least once then check for duplicate
do{
right--;
}while(nums[right]==nums[right+1]&&left<right);
}
}
}
}
return total;
}
};
Solution2
1 | class Solution { |
time complexity: $O(n^3)$
space complexity: $O(1)$