Problem description:

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.

Example:

Given the sorted array: [-10,-3,0,5,9],

One possible answer is: [0,-3,9,-10,null,5], which represents the following height balanced BST:

1
2
3
4
5
     0
/ \
-3 9
/ /
-10 5

Solution:

  1. find node to create as root, binary search to get mid
  2. find left and right children, left= [start, mid-1], right= [mid+1, end]
  3. return root
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
if(!nums.size()) return NULL;
TreeNode* head= helper(nums, 0, nums.size()-1);
return head;
}

TreeNode* helper(vector<int>& nums, int low, int high){
if(low > high) return NULL;

int mid= (low+high)/2;
//int mid= low +(high-low)/2;
//this can avoid int overflow

TreeNode* node= new TreeNode(nums[mid]);
node->left= helper(nums, low, mid-1);
node->right= helper(nums, mid+1, high);
return node;
}
};

reference: