311. Sparse Matrix Multiplication
Problem description:
Given two sparse matrices A and B, return the result of AB.
You may assume that A’s column number is equal to B’s row number.
Example:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18Input:
A = [
[ 1, 0, 0],
[-1, 0, 3]
]
B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]
Output:
| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |
Solution:
Matrix multiply:
- A[i][k]* B[k][j]= C[i][j]
- C[i][j]= A[i][0]B[0][j]+ A[i][1]B[1][j]+ … +A[i][k]*B[k][j]
1 | class Solution { |
time complexity: $O(AB)$, $A: A.size()*A[0].size(), B: B.size()*B[0].size()$
space complexity: $O(1)$
reference:
https://goo.gl/yDQCx2