Problem description:

Given two sparse matrices A and B, return the result of AB.

You may assume that A’s column number is equal to B’s row number.

Example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Input:

A = [
[ 1, 0, 0],
[-1, 0, 3]
]

B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
]

Output:

| 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |

Solution:

Matrix multiply:

  • A[i][k]* B[k][j]= C[i][j]
  • C[i][j]= A[i][0]B[0][j]+ A[i][1]B[1][j]+ … +A[i][k]*B[k][j]
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
class Solution {
public:
vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) {
vector<vector<int>> res(A.size(), vector<int>(B[0].size(), 0));

for(int i= 0; i< A.size(); i++){
for(int k= 0; k< A[0].size(); k++){
if(A[i][k] != 0){ //it's sparse matrix, this can reduce redundant calculation
for(int j= 0; j< B[0].size(); j++){
if(B[k][j] != 0) res[i][j]+= A[i][k]* B[k][j];
}
}
}
}
return res;
}
};

time complexity: $O(AB)$, $A: A.size()*A[0].size(), B: B.size()*B[0].size()$
space complexity: $O(1)$
reference:
https://goo.gl/yDQCx2