Problem description:

Given a binary tree containing digits from 0-9 only, each root-to-leaf path could represent a number.

An example is the root-to-leaf path 1->2->3 which represents the number 123.

Find the total sum of all root-to-leaf numbers.

Note: A leaf is a node with no children.

Example:

1
2
3
4
5
6
7
8
9
Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.

Example 2:

1
2
3
4
5
6
7
8
9
10
11
12
Input: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.

Solution:

A simple DFS solution, use an integer to store the current sum. For every node, update the val as val*10 plus node’s data.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sumNumbers(self, root: Optional[TreeNode]) -> int:
def dfs(root, curNum):
# print("=====")
if not root.left and not root.right:
return curNum*10+root.val
left, right = 0, 0
if root.left:
left = dfs(root.left, curNum*10 + root.val)
if root.right:
right = dfs(root.right, curNum*10 + root.val)
return left + right
return dfs(root, 0)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int sumNumbers(TreeNode* root) {
if (!root) return 0;
return helper(root, 0);
}
int helper(TreeNode* root, int x) {
if (!root->right && !root->left)
return 10 * x + root->val;
int val = 0;
if (root->left)
val += helper(root->left, 10 * x + root->val);
if (root->right)
val += helper(root->right, 10 * x + root->val);
return val;
}
};

BFS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def sumNumbers(self, root: Optional[TreeNode]) -> int:
# BFS
queue = deque([(root, root.val)])
res = 0
while queue:
front, curSum = queue.popleft()
if not front.left and not front.right:
print(curSum)
res += curSum
continue

if front.left:
queue.append((front.left, curSum*10+front.left.val))
if front.right:
queue.append((front.right, curSum*10+front.right.val))
return res

time complexity: $O(n)$
space complexity: $O(logn)$
reference: