Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
Follow up: Could you do both operations in O(1) time complexity?
Example:
1 2 3 4 5 6 7 8 9 10 11
LRUCache cache = new LRUCache( 2 /* capacity */ );
defget(self, key: int) -> int: if key in self.cache: val = self.cache[key] self.cache.move_to_end(key) return val else: return-1
defput(self, key: int, value: int) -> None: if key in self.cache: # renew the node del self.cache[key] self.cache[key] = value elif key notin self.cache and len(self.cache) == self.capacity: self.cache.popitem(last=False) self.cache[key] = value else: self.cache[key] = value
defget(self, key): if key in self.dic: n = self.dic[key] self._remove(n) self._add(n) return n.val return-1
defput(self, key, value): if key in self.dic: self._remove(self.dic[key]) n = Node(key, value) self._add(n) self.dic[key] = n if len(self.dic) > self.capacity: n = self.head.next self._remove(n) del self.dic[n.key]
def_remove(self, node): p = node.prev n = node.next p.next = n n.prev = p
def_add(self, node): p = self.tail.prev p.next = node self.tail.prev = node node.prev = p node.next = self.tail
Solution: C++
For this question, we need to think how to track a memory block by a key value. list<pair<int, int>> represents the memory queue, <key, value> unordered_map<int, list<pair<int, int>>::iterator> can help us find position of memory block in list size denotes the memory capacity
classLRUCache { public: //need three variable to store information int size; list<pair<int, int>> l; unordered_map<int, list<pair<int, int>>::iterator> map; LRUCache(int capacity) { size= capacity; } intget(int key){ // find if this key exist in the map // if exist, move it to the beginning in the list auto it= map.find(key); if(it == map.end()) return-1; //can not find, return -1 l.splice(l.begin(), l, it->second); return it->second->second; //the value corresponding to the key is in list } voidput(int key, int value){ auto it= map.find(key); if(it != map.end()) //exist in the map and list, erase and make a new one l.erase(it->second); l.push_front(make_pair(key, value)); map[key]= l.begin(); if(map.size() > size){ auto index= l.rbegin()->first; l.pop_back(); map.erase(index); } } };
/** * Your LRUCache object will be instantiated and called as such: * LRUCache obj = new LRUCache(capacity); * int param_1 = obj.get(key); * obj.put(key,value); */