Problem description:

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

Follow up:
Could you do both operations in O(1) time complexity?

Example:

1
2
3
4
5
6
7
8
9
10
11
LRUCache cache = new LRUCache( 2 /* capacity */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // returns 1
cache.put(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.put(4, 4); // evicts key 1
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4

Solution:

Pythonic way is to use OrderedDict()

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class LRUCache:
def __init__(self, capacity: int):
self.capacity = capacity
self.cache = OrderedDict()

def get(self, key: int) -> int:
if key in self.cache:
val = self.cache[key]
self.cache.move_to_end(key)
return val
else:
return -1

def put(self, key: int, value: int) -> None:
if key in self.cache:
# renew the node
del self.cache[key]
self.cache[key] = value
elif key not in self.cache and len(self.cache) == self.capacity:
self.cache.popitem(last=False)
self.cache[key] = value
else:
self.cache[key] = value
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
class Node:
def __init__(self, k, v):
self.key = k
self.val = v
self.prev = None
self.next = None

class LRUCache:
def __init__(self, capacity):
self.capacity = capacity
self.dic = dict()
self.head = Node(0, 0)
self.tail = Node(0, 0)
self.head.next = self.tail
self.tail.prev = self.head

def get(self, key):
if key in self.dic:
n = self.dic[key]
self._remove(n)
self._add(n)
return n.val
return -1

def put(self, key, value):
if key in self.dic:
self._remove(self.dic[key])
n = Node(key, value)
self._add(n)
self.dic[key] = n
if len(self.dic) > self.capacity:
n = self.head.next
self._remove(n)
del self.dic[n.key]

def _remove(self, node):
p = node.prev
n = node.next
p.next = n
n.prev = p

def _add(self, node):
p = self.tail.prev
p.next = node
self.tail.prev = node
node.prev = p
node.next = self.tail

Solution: C++

For this question, we need to think how to track a memory block by a key value.
list<pair<int, int>> represents the memory queue, <key, value>
unordered_map<int, list<pair<int, int>>::iterator> can help us find position of memory block in list
size denotes the memory capacity

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
class LRUCache {
public:
//need three variable to store information
int size;
list<pair<int, int>> l;
unordered_map<int, list<pair<int, int>>::iterator> map;
LRUCache(int capacity) {
size= capacity;
}

int get(int key) {
// find if this key exist in the map
// if exist, move it to the beginning in the list
auto it= map.find(key);
if(it == map.end()) return -1; //can not find, return -1
l.splice(l.begin(), l, it->second);
return it->second->second; //the value corresponding to the key is in list
}

void put(int key, int value) {
auto it= map.find(key);
if(it != map.end()) //exist in the map and list, erase and make a new one
l.erase(it->second);

l.push_front(make_pair(key, value));
map[key]= l.begin();

if(map.size() > size){
auto index= l.rbegin()->first;
l.pop_back();
map.erase(index);
}
}
};

/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache obj = new LRUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/

time complexity: $O(1)$
space complexity: $O(n)$
reference:
http://www.cnblogs.com/grandyang/p/4587511.html