Problem description:

For a binary tree T, we can define a flip operation as follows: choose any node, and swap the left and right child subtrees.

A binary tree X is flip equivalent to a binary tree Y if and only if we can make X equal to Y after some number of flip operations.

Write a function that determines whether two binary trees are flip equivalent. The trees are given by root nodes root1 and root2.

Example 1:

Input: root1 = [1,2,3,4,5,6,null,null,null,7,8], root2 = [1,3,2,null,6,4,5,null,null,null,null,8,7]
Output: true
Explanation: We flipped at nodes with values 1, 3, and 5.
Flipped Trees Diagram

Note:

Each tree will have at most 100 nodes.
Each value in each tree will be a unique integer in the range [0, 99].

Solution:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
bool flipEquiv(TreeNode* root1, TreeNode* root2) {
if(!root1 && !root2) return true;
if(!root1) return !root2;
if(!root2) return !root1;
if(root1->val != root2->val) return false;

return (flipEquiv(root1->left, root2->left) && flipEquiv(root1->right, root2->right) || flipEquiv(root1->left, root2->right) && flipEquiv(root1->right, root2->left));
}
};

time complexity: $O()$
space complexity: $O()$
reference: