Problem description:

A parentheses string is valid if and only if:

  • It is the empty string,
  • It can be written as AB (A concatenated with B), where A and B are valid strings, or
  • It can be written as (A), where A is a valid string.

You are given a parentheses string s. In one move, you can insert a parenthesis at any position of the string.

  • For example, if s = "()))", you can insert an opening parenthesis to be "(**(**)))" or a closing parenthesis to be "())**)**)".

Return the minimum number of moves required to make s valid.

Example 1:

1
2
Input: s = "())"
Output: 1

Example 2:

1
2
Input: s = "((("
Output: 3

Example 3:

1
2
Input: s = "()"
Output: 0

Example 4:

1
2
Input: s = "()))(("
Output: 4

Constraints:

  • 1 <= s.length <= 1000
  • s[i] is either '(' or ')'.

Solution:

Count invalid left and right

1
2
3
4
5
6
7
8
9
10
11
class Solution:
def minAddToMakeValid(self, s: str) -> int:
l, r = 0, 0
for c in s:
if c == '(':
l += 1
elif l > 0:
l -= 1
else:
r += 1
return l + r

Stack

1
2
3
4
5
6
7
8
9
10
11
12
13
14
class Solution:
def minAddToMakeValid(self, s: str) -> int:
stack = list()
result = 0
for i in range(len(s)):
if s[i] == "(":
stack.append(s[i])
else:
if stack:
stack.pop()
else:
result += 1

return result+len(stack)

time complexity: $O()$
space complexity: $O()$
reference:
related problem: